

Tetrahedron Letters 43 (2002) 1633-1636

TETRAHEDRON LETTERS

Pyrrocidines A and B, new antibiotics produced by a filamentous fungus

Haiyin He,* Hui Y. Yang, Ramunas Bigelis, Eric H. Solum, Michael Greenstein and Guy T. Carter

Natural Products Chemistry, Wyeth-Ayerst Research, 401 N. Middletown Road, Pearl River, NY 10965, USA Received 5 November 2001; revised 8 January 2002; accepted 9 January 2002

Abstract—Pyrrocidines A (1) and B (2), two new antibiotics, containing rare 13-membered macrocycles, were isolated from the fermentation broth of a fungus, *LL*-Cyan426. Pyrrocidine A (1) exhibited potent activity against Gram-positive bacteria, including drug-resistant strains. The structures of these compounds were established using spectroscopic methods. \bigcirc 2002 Elsevier Science Ltd. All rights reserved.

In the course of our continuous search for novel antibiotics to combat drug-resistance in antibacterial chemotherapy,¹ we discovered that the production of many biologically active fungal metabolites could be significantly increased by fermentation in heterogeneous phases.² Among the several organisms we studied, an unidentified filamentous fungus, LL-Cyan426,3 produced much enhanced antibacterial activity when fermented with this method compared with the regular one-phase liquid or solid medium fermentation methods. Two closely related antibiotics, designated pyrrocidines A (1) and B (2), were isolated from the fermentation broth and found to be primarily responsible for the activity. Compounds 1 and 2 possess a tricyclic moiety, which is fused to 13-membered macrocycles containing phenyl and pyrrolidinone functions (Fig. 1). Compound 1 showed potent activity against Gram-positive bacteria, including the piperacillin-resistant streptococci and vancomycin-resistant enterococci. In this paper the production, isolation, and structural determination of the new antibiotics pyrrocidines A (1) and B (2) are reported.

A 14-day culture of *LL*-Cyan426 in heterogeneous phases⁴ was extracted by methanol and an assay-guided fractionation⁵ of the extract led to the isolation of the hydrophobic pyrrocidines A (1) and B (2), along with the known ilicicolins A, C, E, and F.⁶

The molecular formula of pyrrocidine A $(1)^7$ was determined to be $C_{31}H_{37}NO_4$ by high resolution Fourier transform ion cyclotron resonance (FTICR) mass spec-

trometry. The ¹³C NMR spectrum displayed signals of a ketone carbonyl at δ 202.4 and an amide carbonyl at 168.2, together with 12 sp² carbon signals between δ 114.7 and 156.6. The ¹³C signals at δ 91.0 and 87.6 indicated the presence of two carbons each attached to at least one heteroatom. The ¹H NMR spectrum showed a D₂O exchangeable signal at δ 8.77, assigned to an amide NH proton. There were four double doublet signals belonging to a homonuclear spin system in

Figure 1. Structures of cyan426-A (1) and B (2).

^{*} Corresponding author. E-mail: heh@war.wyeth.com

^{0040-4039/02/\$ -} see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)00099-0

the range from δ 6.80 to 7.18, indicative of a *para*-substituted benzene ring whose rotation was restricted. In addition, four methyl signals were observed at δ 0.85, 0.94, 1.15, and 1.74. The ¹H and ¹³C NMR spectral data of **1** are listed in Table 1.

Detailed analysis of 2-D ¹H–¹H COSY and TOCSY, ¹H–¹³C HMBC, and HSQC data for **1** revealed a tricyclic system from C-3 to C-15. The COSY and TOCSY spectra delineated the ¹H–¹H spin system including H-4, H-3, H-15, H-14, H-6, H-13, H-12, H-11, H₂-10, H-9, and H₂-8. The 2- or 3-bond ¹H–¹³C correlations in an HMBC spectrum between 5-Me (δ 1.68) and C-4 (122.7), C-5 (135.4), and C-6 (51.7), between 7-Me (δ 1.13) and C-6, C-7 (46.9), C-8 (47.8), and C-12 (52.8), between 9-Me (δ 0.85) and C-8, C-9 (27.7) and C-10 (44.3), and between 11-Me (δ 0.94) and C-10, C-11 (26.6), and C-12 established the substituted decahydrofluorene moiety. The attachment of the C-1 and C-2 ethenyl group at C-3 was required by a cross peak between H-2 at δ 5.86 and H-3 at 2.68 in the COSY spectrum, and by related correlations in the HMBC spectrum (Table 1).

This tricyclic system was fused to an unusual 13-membered macrocycle through ether and ketone linkages. In the HMBC spectrum, a weak correlation from H-13 at δ 4.25 to C-24 at 156.6 implied that C-13 and C-24 were connected through an ether linkage. On the other hand, the evidence for the ketone linkage was found in the 2- and 3-bond correlations from H-14 at δ 2.10, H-15 at 2.76, and H-18 at 6.67 to the C-16 ketone signal at δ 202.4. The 5-membered pyrrolidinone ring was identified based on the chemical shift data, and the HMBC correlations from the amide proton at δ 8.77 to carbons C-1' at δ 168.2, C-17 at 138.5 and C-18 at 151.3, C-19 at 87.6, and from H-18 to C-17, C-19, and C-1'. The correlations from H₂-20 at δ 3.10 and 3.17 to C-19, C-21 at 130.9 and C-26 at 131.6 indicated that the phenyl and pyrrolidinone functions were connected through a methylene group. Thus, the elucidation of the planar structure of pyrrocidine A (1) was com-

Table 1. ¹H and ¹³C NMR spectral data for pyrrocidine A (1), in DMSO-d₆

Atom	¹ H (400 MHz, mult., J in Hz)	¹³ C (100 MHz)	HMBC (J=8 Hz)
1	4.95 (cis, d, 9.5)	114.7 (CH ₂)	C-2, C-3
	4.98 (trans, d, 16.5)		C-2, C-3
2	5.86 (m)	141.6 (CH)	C-3, C-4, C-15
3	2.68 (m)	37.2 (CH)	C-2, C-4, C-5, C-14, C-15, C-16
4	5.42 (br d, 6.4)	122.7 (CH)	C-3, 5-Me, C-6
5		135.4 (C)	
5-Me	1.74 (3H, s)	25.0 (CH ₃)	C-4, C-5, C-6
6	2.11 (m)	51.7 (CH)	C-4, C-5, C-7, 7-Me, C-12, C-13, C-14
7		46.9 (C)	
7-Me	1.15 (3H, s)	23.5 (CH ₃)	C-6, C-7, C-8, C-12
8	0.88 (m)	47.8 (CH ₂)	C-7, 7-Me, C-9
	1.69 (m)		C-7, C-9, C-10, C-12
9	1.70 (m)	27.7 (CH)	C-10
9-Me	0.85 (3H, d, 6.2)	22.8 (CH ₃)	C-8, C-9, C-10
10	0.43 (ddd, 11.7, 11.7, 11.7)	44.3 (CH ₂)	C-8, C-9, 9-Me, C-11, 11-Me, C-12
	1.67 (m)		C-8, C-9, C-12
11	1.78 (m)	26.6 (CH)	11-Me, C-10
11-Me	0.94 (3H, d, 6.2)	19.7 (CH ₃)	C-10, C-11, C-12
12	1.10 (dd, 11.4, 6.1)	52.8 (CH)	C-6, C-7, 7-Me, C-8, C-11, 11-Me
13	4.25 (br d, 6.1)	91.0 (CH)	C-7, C-12, C-15, C-24
14	2.10 (m)	41.4 (CH)	C-3, C-5, C-6, C-13, C-15, C-16
15	2.76 (br s)	50.4 (CH)	C-2, C-3, C-4, C-6, C-13, C-14, C-16
16		202.4 (C)	
17		138.5 (C)	
18	6.67 (s)	151.3 (CH)	C-1', C-16, C-17, C-19
19		87.6 (C)	
20	3.10 (d, 12.5)	43.8 (CH ₂)	C-18, C-19, C-21, C-26
	3.17 (d, 13.7)		C-18, C-19, C-21, C-26
21		130.9 (C)	
22	7.15 (br d, 7.3)	130.0 (CH)	C-19, C-20, C-24, C-26
23	7.02 (br d, 7.9)	121.4 (CH)	C-21, C-24, C-25
24		156.6 (C)	
25	6.8 (br d, 7.8)	124.4 (CH)	C-21, C-23, C-24
26	7.17 (br d, 6.9)	131.6 (CH)	C-19, C-20, C-22, C-24
NH	8.77 (s)	108.2 (C)	C-1', C-17, C-18, C-19

pleted. Compound **1** was treated with 0.2 M HCl in 1:5 MeOH/Et₂O (rt, 24 h) to give a methyl ether derivative. The ¹H NMR spectrum of the product showed an additional methyl signal at δ 3.06, which was correlated to ¹³C signal at δ 92.3 in an HMBC spectrum. These data clearly indicated the presence of a methoxy group on C-19 in the methylation product, which confirmed the structural assignment for **1**.

The molecular formula of pyrrocidine B $(2)^8$ was determined by high resolution FTICR mass spectrometry to be $C_{31}H_{39}NO_4$, indicating two additional hydrogen atoms to that of pyrrocidine A (1). The analysis of its ¹H and ¹³C NMR spectral data led to the conclusion that this compound differed 1 only in the pyrrolidinone ring where the double bond was reduced.

The relative configurations of these compounds were deduced from the NOE data. For both compounds 1 and 2, strong cross peaks in ROESY spectra from 7-Me to H-6 and H-14, and signals from H₂-1 to H-12 defined cis A/B and trans B/C ring junctions. The ROESY cross peaks from H-2 to H-15, from H-13 to H-15, and from H-12 to H-13 required that both H-13 and H-15 have upward orientations. The H-10ax at δ 0.43 (ddd, all 11.7 Hz) was diaxial to H-9 and H-11, indicating equatorial positions for 9-Me and 11-Me. Finally, the regiochemistry of the pyrrolidinone moieties was determined by the ROESY correlations from 7-Me to H-25, from H-18 to H-26, and from H-15 to H-22 and H-23. The stereochemistry for these two compounds and the selected ROESY correlations were shown in Fig. 2.

Figure 2. Selected NOEs (indicated by arcs) which define the stereochemistry for pyrrocidines A (1) and B (2).

Pyrrocidine A (1) exhibited potent antibiotic activity against most Gram-positive bacteria, including the drug-resistant strains, but only showed moderate activity against *Streptococcus pneumoniae*. It was also active against the yeast *Candida albicans*. Pyrrocidine B (2) showed weaker activity. MIC data obtained by the broth dilution method are listed in Table 2.

The pyrrolidinone function has been reported in other antifungal compounds, the talaroconvolutin A (3)⁹ and the modulator for synthesis of platelet-activating factor ZG-1494 α (4),¹⁰ but the 13-membered macrocycle containing ether, phenyl, pyrrolidinone, and ketone functions as in 1 is the first example found in natural products. While preparing for this manuscript, a patent publication covering the antitumor compound, GKK1032 [planar structure, identical to pyrrocidine B (2)], came to our attention.¹¹ Biosynthetically, these compounds are suspected to derive from polyketide and amino acid origins. The ¹³C labeling experiments designed to study their biosynthesis pathway are currently underway (Fig. 3).

Table 2. Antimicrobial activity of pyrrocidines A and B

Test organism	$MIC \ (\mu g/ml)^a$	
	A(1)	B(2)
Staphylococcus aureus (four strains, including two piperacillin-resistant strains)	0.25–2	48
S. haemolyticus GC 4546 Enterococcus faecalis (three strains) E. faecium (three strains, including two vancomycin-resistant strains)	0.25 0.5 0.5–1	8 4–8 4–8
Streptococcus pneumoniae (two strains) Escherichia coli (two strains) Candida albicans	16–64 128 8	32–128 > 128 128

^a Broth dilution method in Mueller–Hinton II, incubated at 35°C for 18 h.

Figure 3. Structures of talaroconvolutin A (3) and ZG-1494 α (4), which contain pyrrolidinone function.

Acknowledgements

The authors wish to thank Pete Petersen for in vitro antimicrobial tests, Keiko Tabei for high-resolution MS measurements, and Thomas Williamson for some 2D NMR data.

References

- 1. Chopra, I.; Hodgson, J.; Metcalf, B.; Poste, G. Antimicrob. Agents Chemother. 1997, 41, 497.
- 2. Details of this fermentation method will be published elsewhere. An example of *LL*-Cyan426 fermentation is described in Ref. 4.
- 3. Isolated from a mixed Douglas Fir hardwood forest on Crane Island Preserve, Washington, in 1993.
- 4. The fungal culture *LL*-Cyan426 was plated on Bennett's agar medium from a frozen culture and incubated at 22°C. A small agar slice bearing mycelia was used to inoculate 50 ml of Difco potato-dextrose broth in a 250 ml Erlenmeyer flask. This liquid seed culture was shaken at 200 rpm at 22°C for 1 week, and then used to inoculate the production medium. The sterilized production medium (1 L, 25 g Difco malt extract, 5 g Difco peptone, 0.5 g Difco yeast extract, 20 g Difco agar) was poured into a polypropylene tray. The solidified agar was then overlaid with a sheet of sterilized milk filter paper followed by inoculation with 50 ml of seed culture fluid. After 2 weeks incubation at 22°C, the filter paper bearing prolific mycelial growth was peeled, lyophilized, and extracted with methanol.
- 5. The methanol extract was separated by reverse phase HPLC on a C18 column (YMC ODS-A, 10 μ m particle size, 70×500 mm), using a gradient of 90–100% acetonitrile in water containing 0.02% trifluoroacetic acid (TFA) over 40 min. The early fractions were found to contain the known ilicicolins A, C, E, and F, and the materials from a late fraction at 33 min, active in antibacterial assays, were further separated by a different HPLC sys-

tem (YMC ODS-A, 5 μ m, 10×250 mm column, 70–100% acetonitrile in water with 0.02% TFA over 25 min) to afford pure pyrrocidines B (2) (3.1 mg) and A (1) (21.8 mg) as yellowish amorphous powders.

- Minato, H.; Katayama, T.; Hayakawa, S.; Katajiri, K. J. Antibiot. 1972, 25 (5), 315.
- 7. $[\alpha]_{D}$ = +91.2° (*c* = 0.58, MeOH), HRFTICRMS (neg.) *m/z* 486.26486 [(M–H)⁻, C₃₁H₃₆NO₄ requires 486.26498]; ¹H and ¹³C NMR spectral data, see Table 1.
- 8. $[\alpha]_{\rm D} = +88.2^{\circ} (c = 0.22, \text{ MeOH}), \text{ HRFTICRMS (pos.) } m/z$ 490.29481 (MH⁺, C₃₁H₄₀NO₄ requires 490.29573); ¹H NMR (DMSO-d₆, 400 MHz) δ 4.90 (br d, 9.5 Hz, H-1cis), 4.94 (br d, 16.1 Hz, H-1trans), 5.87 (m, H-2), 3.11 (m, H-3), 5.20 (br d, 6.6 Hz, H-4), 1.68 (3H, s, 5-Me), 2.29 (d, 8.4 Hz, H-6), 1.13 (3H, s, 7-Me), 0.87, 1.66 (m, H₂-8), 1.72 (m, H-9), 0.86 (3H, d, 6.2 Hz, 9-Me), 0.40 (ddd, all 11.8 Hz, H-10ax), 1.67 (m, H-10eq), 1.77 (m, H-11), 0.96 (3H, d, 6.1 Hz, 11-Me), 0.99 (dd, 11.3, 6.7 Hz, H-12), 4.16 (dd, 6.7, 2.7 Hz, H-13), 2.19 (m, H-14), 1.78 (br s, H-15), 3.13 (dd, 12.7, 6.8 Hz, H-17), 1.73 (m), 2.12 (dd, 14.6, 12.7 Hz, H₂-18), 2.72, 2.96 (d, 13.1, H₂-20), 7.32 (dd, 8.4, 1.8 Hz, H-22), 7.07 (dd, 8.4, 2.1 Hz, H-23), 6.83 (dd, 8.1, 2.1 Hz, H-25), 7.20 (dd, 8.1, 1.8 Hz, H-26), 8.65 (br s, D₂O exchangeable, NH), ¹³C NMR (DMSO-d₆, 100 MHz) & 114.1 (C-1), 141.5 (C-2), 36.7 (C-3), 121.7 (C-4), 136.1 (C-5), 24.8 (5-Me), 52.9 (C-6), 46.9 (C-7), 22.9 (7-Me), 47.5 (C-8), 27.7 (C-9), 22.8 (9-Me), 44.5 (C-10), 26.7 (C-11), 19.8 (11-Me), 52.2 (C-12), 90.8 (C-13), 43.5 (C-14), 49.7 (C-15), 209.6 (C-16), 53.3 (C-17), 36.7 (C-18), 87.6 (C-19), 44.6 (C-20), 132.2 (C-21), 133.1 (C-22), 121.8 (C-23), 157.3 (C-24), 124.0 (C-25), 131.7 (C-26), 172.3 (C-1').
- Suzuki, S.; Hosoe, T.; Nazawa, K.; Kawai, K.; Yaguchi, T.; Udagawa, S. J. Nat. Prod. 2000, 63 (6), 768.
- West, R.; Van Ness, J.; Varming, A.; Rassing, B.; Biggs, S.; Gasper, S.; Mackernan, P. A.; Piggot, J. J. Antibiot. 1996, 49 (10), 967.
- Koizumi, F., Hasegawa, K., Ando, K., Ogawa, T., Hara, A. Antitumor GKK1032 manufacture with Penicillium, *Jpn. Kokai Tokkyo Koho* 2001, JP 2001247574 A2 200109.